Hodge-theoretic Obstruction to Existence of Quaternion Algebras

نویسنده

  • ANDREW KRESCH
چکیده

The subject of this paper is the Brauer group of a nonsingular complex projective variety. More specifically, we study the question of whether a 2-torsion element of the cohomological Brauer group is representable by a quaternion algebra over the generic point. Using intersection theory – on schemes and on algebraic stacks – we are able to describe an obstruction to such a representation, and therefore, to give examples of varieties with 2-torsion classes that are not representable by quaternion algebras. Let X be a nonsingular complex algebraic variety. It is a well-known consequence of the Grauert–Remmert theorem, plus GAGA, that topological 2sheeted covers, classified byH(X,Z/2), correspond exactly to algebraic degree 2 unramified covers. There is similarly an algebraic object that we can associate to an element α ∈ H(X,Z/2) – a kind of algebraic stack overX known as a gerbe. The element α determines a 2-torsion element of Br(X) = H(X,Gm), and if this element is represented by a quaternion algebra then the quaternion algebra can be identified with the (descent to X of the) endomorphism algebra of a rank 2 vector bundle on the gerbe. The second Chern class of this bundle (or rather, a specific multiple of this) is an algebraic class on X, and if X is projective this leads to a Hodge-theoretic obstruction to representing the element of Br(X) by a quaternion algebra. We turn now to the statement of our main result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hodge-theoretic obstruction to the existence of quaternion algebras

This paper gives a necessary criterion in terms of Hodge theory for representability by quaternion algebras of certain 2-torsion classes in the unramified Brauer group of a complex function field. This criterion is used to give examples of threefolds with unramified Brauer group elements which are the classes of biquaternion division algebras. DOI: https://doi.org/10.1112/S0024609302001546 Post...

متن کامل

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

New Values for the Level and Sublevel of Composition Algebras

Constructions of quaternion and octonion algebras, suggested to have new level and sublevel values, are proposed and justified. In particular, octonion algebras of level and sublevel 6 and 7 are constructed. In addition, Hoffmann’s proof of the existence of infinitely many new values for the level of a quaternion algebra is generalised and adapted.

متن کامل

CM points and quaternion algebras

2 CM points on quaternion algebras 4 2.1 CM points, special points and reduction maps . . . . . . . . . 4 2.1.1 Quaternion algebras. . . . . . . . . . . . . . . . . . . . 4 2.1.2 Algebraic groups. . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Adelic groups. . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.4 Main objects. . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.5 Galois action...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008